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Abstract (EN) 

The SeverusPT project aims to periodically and timely provide relevant and 
standardized information on burn severity supported by satellite and field 
observations. Key objectives include developing a spatially explicit framework for 
assessing, mapping, and predicting burn severity and delivering a co-designed 
product/service to enhance institutional and operational capacity for fire hazard 
management and post-fire ecosystem restoration.  

The project currently provides standardized satellite-based datasets on mainland 
Portugal’s observed/historical burn severity, leveraging multiple satellite missions 
(Sentinel-2, Landsat, MODIS), spectral indices (e.g., Normalized Burn Ratio – NBR, 
Tasseled Cap Transformation – TCT), and burn severity indicators. The datasets are 
derived from pre-calculated severity products through algorithms that integrate 
satellite image time series (SITS) in two main approaches: (i) a delta-based pipeline, 
employing “classical” severity measurements (e.g., delta NBR) and focused primarily 
on high spatial resolution satellites; and (ii) a trajectory-based pipeline supported by 
SITS and the analysis of post-fire trajectories for multiple dimensions of ecosystem 
functioning and primarily focusing on high-temporal/moderate spatial resolution 
satellites.  

Field assessments, critical for validating satellite products and obtaining nuanced 
results regarding post-fire effects, were used to provide information on burn severity 
across different structural components of vegetation. The project used a purposive 
stratified approach for field surveys, focusing on the 2022 fire season across mainland 
Portugal. Selection criteria based on fire size, location, main vegetation type, and 
other ancillary layers enabled comprehensive coverage and diversity in post-fire 
conditions. Approximately 111 sites in 28 burned areas were surveyed in north and 
centre Portugal (the wildfire foci in the country) using the Geometrically Structured 
Composite Burn Index (GeoCBI) protocol. Two methods were used to validate the 
delta-based products by comparing in situ GeoCBI and satellite burn severity 
estimates: (i) non-parametric linear correlation (Spearman method) and nonlinear 
correlation; and (ii) a nonlinear exponential model adapted from pre-existing studies.  

Delta-based SeverusPT products agreed well with GeoCBI field measures of burn 
severity. The best linear correlation results were bounded between 0.64 and 0.71. 
Sentinel-2 and the NBR spectral index with RBR generally ranked higher when 
compared to Landsat-8. For nonlinear correlation, results were between 0.65 and 
0.76, with the best results for Landsat-8 TCTG, closely followed by Sentinel-2 NBR 
spectral index with RDT or RBR indicators. The results for the nonlinear model 
validation were similar, with the best marks attained by the RdNBR, RBR, and dNBR 
indicators (R2= 0.64, 0.62, and 0.60, respectively).  

The project’s data portal is a centralized gateway for accessing and downloading 
project data and metadata. It offers two primary levels of data access: Level 1 includes 
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the products, and Level 2 comprises image data files along with metadata. The 
trajectory-based pipeline and products are still under active development and will be 
added to the SeverusPT Data Portal.  

SeverusPT builds on a comprehensive approach combining satellite data with 
rigorous field validation, yielding significant insights into wildfire severity. The 
project’s innovative methodologies and the data portal’s accessibility contribute to 
the field of wildfire severity assessment, offering valuable data and tools for fire 
management and prioritizing post-fire mitigation and recovery strategies. 

 

Resumo (PT) 

O projecto SeverusPT tem como objetivo disponibilizar, de forma regular e 
atempada, informação relevante e pradonizada da severidade da área ardida, 
baseada em dados de satélite e observações no terreno. Os principais objetivos 
incluem o desenvolvimento de uma moldura de análise espacialmente explícita para 
avaliar, mapear e prever a severidade da área ardida, fornecendo um produto/serviço 
resultante de co-desenho para melhorar a capacidade institucional e operacional 
para a gestão do risco de incêndio e o restauro dos ecossistemas pós-incêndio. 

Atualmente este projeto disponibiliza conjuntos de dados derivados de imagens de 
satélite para Portugal Continental acerca da severidade histórica/observada da área 
ardida. Estes conjuntos de dados fazem uso de informação proveniente de múltiplas 
missões espaciais (Sentinel-2, Landsat, MODIS), índices espetrais (p.ex. “Normalized 
Burn Ratio” – NBR, “Tasseled Cap Transformation” – TCT), e indicadores da 
severidade da área ardida. Os conjuntos de dados derivam de produtos pré-
calculados de severidade através de algoritmos que integram séries temporais de 
imagens de satélite (SITS) em duas abordagens principais: (i) a cadeia de 
processamento (“pipeline”) baseado em deltas, que implementa medidas “clássicas” 
de severidade (p.ex. delta-NBR) e que se foca principalmente em satélites de alta 
resolução espacial; e (ii) a cadeia de processamento baseado em trajetórias, que se 
baseia na análise de trajetórias pós-incêndio para múltiplas dimensões do 
funcionamento dos ecossistemas e que se foca em dados de satélite de alta 
resolução temporal e resolução espacial moderada.  

No sentido de fornecer informação acerca da severidade da área ardida em vários 
componentes estruturais da vegetação, foram utilizados dados recolhidos no terreno, 
os quais são cruciais para validar produtos derivados de imagens de satélite e obter 
resultados pormenorizados relativamente a efeitos pós-incêndio. No âmbito do 
projeto foi usada uma abordagem estratificada para efetuar os levantamentos no 
terreno, focada na época de incêndios de 2022 em Portugal Continental. Critérios de 
seleção baseados no tamanho da área ardida, localização, tipo de vegetação 
principal e outras camadas auxiliares de informação permitiram cobrir uma maior 
diversidade de condições pós-incêndio. Foram visitados aproximadamente 111 
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locais pertencentes a um total de 28 áreas ardidas no Norte e Centro de Portugal 
Continental (as zonas do país mais afetadas por incêndios), usando o protocolo 
“Geometrically Structured Composite Burn Index” (GeoCBI). Foram utilizados dois 
métodos para validar os produtos baseados em deltas, através da comparação do 
GeoCBI in situ com estimativas obtidas por satélite: (i) correlações lineares não 
paramétricas (método de Spearman) e correlações não-lineares; e (ii) um modelo 
exponencial não-linear adaptado de estudo pré-existentes. 

Os produtos SeverusPT baseados em deltas apresentaram elevada concordância 
com as medidas de severidade da área ardida recolhidas no terreno através do 
GeoCBI. Os valores resultantes mais elevados para a correlação linear situaram-se 
entre 0,64 e 0,71. Foram obtidos valores geralmente mais elevados para Sentinel-2 e 
para o índice espetral NBR e o indicador de severidade RBR, em comparação com os 
resultados obtidos para Landsat-8. Relativamente às correlações não-lineares, foram 
obtidos valores entre 0,65 e 0,76, tendo os valores mais elevados sido obtidos para o 
índice espetral TCTG derivado de Landsat-8, seguido do índice espetral NBR 
derivado de Sentinel-2 com os indicadores de severidade RDT ou RBR. Foram 
obtidos resultados semelhantes para a validação através de modelo não-linear, com 
os valores mais elevados correspondendo aos indicadores de severidade RdNBR, 
RBR e dNBR (R2 = 0,64, 0,62 e 0,60, respetivamente). 

O portal de dados do projeto constitui uma via de acesso centralizada para a 
visualização e descarregamento de dados e metadados do projeto, oferecendo dois 
níveis primários de acesso: o Nível 1 inclui os produtos e o Nível 2 é constituído por 
ficheiros de imagens e metadados. Os produtos provenientes da cadeia de 
processamento baseada em trajetórias estão ainda em desenvolvimento activo e 
serão adicionados posteriormente no Portal de Dados do SeverusPT. 

O SeverusPT assenta numa abordagem abrangente que combina dados 
provenientes de satélites com uma rigorosa validação baseada em dados recolhidos 
no terreno, oferecendo uma melhor compreensão da severidade dos incêndios. As 
suas metodologias inovadoras e a acessibilidade do seu portal de dados contribuem 
para o campo da avaliação da severidade dos incêndios, providenciando dados e 
ferramentas valiosos para a gestão do fogo e para a priorização de estratégias de 
mitigação e recuperação pós-incêndio.
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1. Introduction 

 

Using satellite and field data, the SeverusPT project aims to provide, in a periodic and 
timely manner, relevant and standardized information on the evaluation and 
prediction of fire severity. By including national entities engaged in fire management, 
emergency response, land planning and Earth Observation, the project aims to 
monitor post-fire ecosystems and contribute to their assessment, resilience and 
restoration. 

 

Main objectives: 

• Develop a spatially explicit framework to assess, map, and predict fire severity; 
• Deliver a co-designed product/service that enhances institutional and 

operational capacity for fire hazard management and post-fire restoration; 
• Foster collaboration with key stakeholders for long-term sustainability and 

continuous improvement of the product/service; 
• Contribute to advancing the state-of-the-art in fire severity mapping and 

modelling and understanding its driving factors and links to fire hazard 
management. 

 

Key features: 

• Robust framework: The project implements a spatially explicit framework that 
assesses, maps, and predicts burn severity, considering the effects of fires on 
ecosystems under a changing climate; 

• Satellite data analysis: Spectral and ecosystem functioning indicators extracted 
from satellite remote sensing time series are leveraged to assess fire severity 
and provide detailed characterizations on a large scale; 

• Web-based services: A user-friendly Data Portal is implemented to access and 
share the project’s data, and web services are being developed to provide 
continuous and standardized fire severity products, facilitating preventive fire 
risk management, monitoring, and post-fire restoration efforts. 

 

1.1. SeverusPT product calculation approaches 

 

SeverusPT provides standardized satellite-based datasets on mainland Portugal's 
observed/historical burn severity. These datasets are based on multiple satellite 
missions (Sentinel-2, Landsat and MODIS), spectral indices (e.g., Normalized Burn 
Ratio, NBR; Tasseled Caps Transformation, TCT) and burn severity indicators. These 
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datasets are based on pre-calculated severity products (i.e., rather than on-demand 
calculation) through algorithms integrating satellite image time series (SITS) and 
taking a multi-temporal aggregation or a time series analysis approach. 

The project encompasses a rigorously defined data organization and distribution 
structure for easy access and sharing. The data is available in raster format compatible 
with any GIS or Remote Sensing software.  

The products have been validated through rigorous in situ surveys in more than 100 
sites across mainland Portugal and nearly 30 burned areas for the focal years of 2021 
and mostly 2022 (as of October 2023). 

Two complementary calculation approaches were used to obtain observed burn 
severity products: 

• Delta approach – based on “classical” severity measurements (e.g., delta NBR) 
and using high spatial resolution satellites – primarily Sentinel-2 (20 meters) 
but also harmonized Landsat-5, 7 and 8 (30 meters). This product already has 
a preliminary version available through the project’s data platform (see section 
5); 
 

• Trajectory approach – based on SITS and the analysis of post-fire trajectories 
for multiple dimensions of ecosystem functioning (see Marcos et al. (2023)). 
This framework was applied to satellite data of moderate spatial resolution – 
MODIS (500 to 1000 meters). 

 

1.2. Some concepts: fire intensity vs. burn severity 

 

As described by Keeley (2009), fire intensity encapsulates the measure of energy 
released from the combustion of organic matter. This metric quantifies the power of a 
wildfire and refers to while the fire is active. It serves as a fundamental parameter in 
understanding the immediate dynamics of a fire event. Fireline intensity, a frequently 
employed metric in assessing fire intensity and behaviour, quantifies the rate of heat 
transfer per unit length of the fire line (expressed in kWm-1). It serves as a direct 
indicator of the radiant energy release at the flaming front. Fireline intensity plays a 
pivotal role in evaluating the likelihood of fire propagation and the challenges 
involved in containment efforts. As such, it is a vital component within fire behaviour 
models, providing essential insights to guide and inform effective wildfire 
suppression strategies (see e.g., Aparício et al. 2022, Sil et al. 2023). 

Burn severity, on the other hand, extends our comprehension beyond the raw 
intensity of the fire. It delves into the aftermath and describes how the fire intensity 
impacts environmental conditions and functions in the affected area. It is a 
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multidimensional concept, as Keeley (2009) emphasizes, with its impacts often 
exhibiting spatial and temporal variability both within the burned area and across 
diverse ecosystems. 

Furthermore, burn severity can be viewed as a measure of the extent to which an 
ecosystem has been transformed or its functioning disrupted by the passage of a fire. 
It reflects the enduring alterations and ecological consequences that fires can leave in 
their wake, encompassing factors like soil damage, vegetation loss, and changes in 
hydrological processes. It also extends to effects on biodiversity and overall 
ecosystem functioning. 

 

 
Figure 1– Illustration of fire intensity versus burn severity (Source: U.S. Forest Service, Gen. Tech. Rep. 
RMRS-GTR-243. 2010). 

 

To better illustrate the contrast between these two critical concepts, Figure 1 visually 
portrays the difference between fire intensity and burn severity, highlighting the 
dynamic interplay between the immediate fire event and the ecological 
consequences that unfold in its aftermath. 

Burn severity typically exhibits variations depending on the specific ecosystem under 
consideration. Spatial variations in burn severity also form what is known as the post-
fire mixed severity landscape, with unburnt to low severity “islands” in which 
biological legacies have high importance in its post-fire recovery (Torres et al. 2018, 
Santos et al. 2022). Typically, larger wildfires (with a higher probability of having more 
heterogeneous fuel types, conditions, and continuity) show higher spatial 
heterogeneity in burn severity levels.  

In forested environments, burn severity is generally assessed through parameters 
such as tree mortality, canopy damage, and the scorching of boles and crowns 
(Keeley 2008). These metrics are often employed as proxies for quantifying the 
intensity of a fire, and they are presumed to reflect the fire's influence on the 
ecosystem's ability to recover. However, it is essential to note that these forest-specific 



 

 7 

measures of burn severity are not universally applicable to other ecosystems, such as 
grasslands or shrublands, where crown fires can result in the total consumption of 
aboveground biomass. In such cases, alternative indicators of burn severity become 
relevant, particularly those that gauge the ecosystem's ability to rebound. These 
indicators include resprouting success and the survival of seed banks (Keeley 2008), 
often challenging as well as time/resource-intensive to estimate in the field.  

The relationship between fire intensity and burn severity is a multifaceted research 
area with still aspects to clarify and uncover. Understanding how different ecosystems 
respond to varying fire intensities and their resulting severities is a complex 
endeavour involving a wide array of ecological factors and interdependencies. 
Further research in this domain is crucial for comprehending the intricate dynamics of 
wildfires in diverse environments and for developing more targeted and effective 
management strategies. 
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2. Delta-based approach 

 

2.1. Introduction to satellite-based estimation of burn severity 

 

Several satellite-based spectral indices have been created to quantify the burn 
severity in a standardised and systematic manner over diverse spatiotemporal scales. 
One well-known example of such spectral indices is the Normalized Burn Ratio (NBR). 
NBR is a valuable index designed to identify and delineate burnt areas and estimate 
burn severity. NBR employs a mathematical formula similar to the well-known 
Normalized Difference Vegetation Index (NDVI), with a unique twist: the NBR 
combines spectral information from both the near-infrared (NIR) and shortwave 
infrared (SWIR) wavelengths, where the contrast of spectral signatures between 
burned vs unburned vegetation is more evident. 

 

 
Figure 2 – Comparison of the spectral response of healthy vegetation and burned areas (image source: 
Alcaras et al. (2022)).  

 

Under “normal” conditions, “healthy” vegetation exhibits a distinctive pattern in its 
spectral reflectance characteristics (hereafter, spectral signature). It tends to show a 
very high reflectance in the NIR region, related to non-photosynthetic 
electromagnetic radiation, while displaying low reflectance in the SWIR portion of the 
electromagnetic spectrum, typically linked to vegetation and soil water content 
(Figure 2).  

However, this pattern sharply contrasts with the spectral signature of areas affected by 
wildfires. These areas typically feature low reflectance in the NIR and high reflectance 
in the SWIR. This pronounced disparity in spectral responses between “healthy” 
vegetation and recently burned regions – chiefly in the NIR and SWIR regions – is 
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featured in the NBR spectral index to portray burn severity by comparing pre- and 
post-fire conditions. The NBR is calculated through a normalized ratio involving the 
NIR and SWIR bands by leveraging the substantial contrast in spectral characteristics. 
A high NBR value is a robust indicator of healthy vegetation, whereas a low NBR value 
points to artificial, bare ground or recently burned areas. The index by itself is not an 
indicator or allows a “direct” classification of burned areas; instead, comparing at least 
two images (i.e., pre- vs post-fire) points to changes in Earth’s surface reflectance that 
can be attributed to wildfire effects. Within the SeverusPT platform, to overcome this 
issue, only burned areas (obtained from validated and publicly available sources) are 
assessed to avoid false detections and thus target severity assessments (only) within 
fire perimeters. 

Overall, the NBR is a valuable index for assessing burn severity in post-fire areas, and 
one way to quantify this is by calculating the delta NBR (dNBR or ∆NBR). The delta 
NBR represents the difference between the pre-fire and post-fire NBR values 
obtained from remote sensing images (or multitemporal composites of images such 
as the case of SeverusPT). It is a widely known and commonly used metric for 
estimating the degree of burn severity. 

In this context, a higher dNBR value indicates more severe damage to the landscape, 
with the affected area showing a significant departure from its pre-fire state. Values 
around zero usually translate to “normal” seasonal shifts related to phenology and 
weather variation. Conversely, areas with negative dNBR values often suggest 
regrowth or recovery following a fire. These negative values often indicate positive 
changes in post-fire vegetation cover compared to the pre-fire conditions. 

 

There are several methods for calculating the difference based on NBR (or other 
similar spectral indices):  

𝑁𝐵𝑅 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

Eqn. 1 – Calculation formula for the Normalized Burn Ratio (NBR) spectral index. NIR is the reflectance in 
the Near Infrared region, and SWIR is the reflectance in the Shortwave Infrared. 

 
• Delta NBR (dNBR): 

 

𝑑𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒−𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡−𝑓𝑖𝑟𝑒 
 

• Relative Difference NBR (RdNBR): 

𝑅𝑑𝑁𝐵𝑅 =
𝑑𝑁𝐵𝑅

√|𝑁𝐵𝑅𝑝𝑟𝑒−𝑓𝑖𝑟𝑒|
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• Relativized Burn Ratio (RBR): 

𝑅𝐵𝑅 =
𝑑𝑁𝐵𝑅

(𝑁𝐵𝑅𝑝𝑟𝑒−𝑓𝑖𝑟𝑒 + 1.001)
 

Eqns. 2 – 4: Equations for delta (d), the relativized difference (Rd) and relative burn ratio (RBR) used to 
estimate burn severity indicators comparing pre- and post-fire satellite images (or multi-temporal 
mosaics). 

 

All these severity indicators are currently available through the SeverusPT Project. 

Delta NBR (dNBR) values indeed exhibit variability depending on the specific 
characteristics of each fire event and targeted ecosystem. For this reason, it is 
advisable to compare remotely sensed data with on-the-ground field assessments to 
obtain more accurate and nuanced results regarding fire effects. Field assessments 
provide more context and information on burn severity across different structural 
components of vegetation (from the ground to tall trees) and can support the 
validation of remotely sensed estimates. 

The USGS’s classification table typically categorizes dNBR values into several burn 
severity classes (Table 1) to aid in interpreting burn severity based on dNBR values. 
This classification system provides a standardized framework for assessing the 
ecological impacts of wildfires and categorizing them into different levels of severity. 
It serves as a useful reference guide for land managers, researchers, and emergency 
response teams. By using these burn severity categories, professionals can quickly 
understand and communicate the ecological consequences of a fire event, allowing 
for more efficient allocation of resources and prioritization of rehabilitation efforts in 
areas with the greatest need. While field assessments are essential for fine-tuning the 
evaluation, the USGS classification system is a valuable starting point for interpreting 
dNBR data. 

 

Table 1– Burn severity categories for dNBR proposed by USGS. 

 
Low severity: This category often corresponds to dNBR values close to zero or slightly positive. It 
suggests minimal ecological impact, potential for post-fire regrowth, and relatively mild soil and 
vegetation damage. 
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Moderate severity: Moderate burn severity may be associated with dNBR values that are moderately 
negative. It indicates a more substantial impact on the landscape, with a moderate reduction in 
vegetation cover and possible soil disturbance. 

High severity: severity is typically linked to strongly positive dNBR values. This class denotes significant 
vegetation damage, including canopy, understory, and notable soil alterations. Post-fire recovery may 
be more challenging in high-severity areas. 

Very-high severity: The highest burn severity level, often represented by highly positive dNBR values, 
suggests severe impacts on vegetation, including widespread mortality of trees and shrubs and 
potentially severe soil damage. Recovery in these areas may be prolonged and challenging. 

 

Burn severity data and corresponding maps are pivotal in formulating post-fire 
emergency rehabilitation and restoration strategies. Beyond assessing the immediate 
impact of a fire, these data sets offer a comprehensive toolkit for estimating the 
severity of soil damage and the probability of consequential downstream 
repercussions, such as flooding, landslides, and soil erosion. 

Burn severity data and maps provide a detailed assessment of how much the fire has 
affected the soil. This information is critical for understanding how the soil’s physical 
and chemical properties have been altered. Soil burn severity data can guide post-fire 
mitigation and restoration actions, aiding in decisions about reseeding, soil 
stabilization, and nutrient management to facilitate ecosystem recovery. The 
significance of burn severity data goes beyond the immediate burn area. By 
considering the potential downstream effects, such as increased runoff and 
sedimentation, these data enable the assessment of risks related to flooding, 
landslides, and soil erosion in the aftermath of a fire. This foresight is invaluable for 
emergency planning and developing measures to mitigate these secondary impacts. 
With standardized and comprehensive burn severity data and maps, land 
management authorities can allocate resources more effectively. This targeted 
approach ensures that the most critical ecological and environmental preservation 
areas receive the necessary attention and resources for restoration. On the other 
hand, by understanding the potential risks of flooding, landslides, and soil erosion 
following a fire, this data aids in safeguarding communities and infrastructure. 
Emergency responders, urban planners, and disaster management agencies can 
make informed decisions to protect public safety and infrastructure integrity.  

In essence, burn severity data and maps are indispensable tools in the post-fire 
landscape, offering a multifaceted view of the environmental consequences of 
wildfires. Integrating these data into rehabilitation and restoration planning makes it 
possible to rehabilitate damaged areas, safeguard against secondary environmental 
threats, and mitigate risks to communities and ecosystems. 
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2.2. Delta-based product calculation in Google Earth Engine platform 

 

SeverusPT employs Google Earth Engine (GEE) to generate delta products and 
process large satellite image time series. GEE facilitates data pre-processing, spectral 
index calculations, spatiotemporal aggregations, and merging image mosaics across 
large areas.  

In a nutshell, GEE is a cloud-based geospatial platform that simplifies access to a vast 
array of Earth observation data and provides in-depth analysis and visualization tools 
(Gorelick et al. 2017). It operates through a JavaScript or Python API, allowing users to 
interact with geospatial data stored in Google's cloud infrastructure. Key features 
include its distributed computing architecture, enabling users to process large 
datasets without significant local computing resources. Earth Engine excels at 
handling temporal data, making it useful for monitoring changes over time. Users can 
also create maps, export analysis outputs to local computing resources, and develop 
animations to visualize analysis results. 

Additionally, the platform encourages sharing and collaboration within the Earth 
Engine community. It can be integrated with other Google services and tools (e.g., 
Google Drive, Google Cloud), enhancing its versatility and convenience for various 
geospatial applications, from environmental monitoring to disaster management and 
urban planning. GEE’s capabilities in accessing, analyzing, and visualizing geospatial 
data and its powerful temporal analysis tools make it an invaluable resource for post-
fire analysis. It aids in understanding the dynamics of wildfires, assessing their 
impacts, and facilitating informed decision-making for both immediate post-fire 
response and short to long-term recovery.  

Despite its many advantages and benefits, GEE holds some caveats mainly tied to its 
Terms of Service (ToS) and limitations due to the lack of analytical features/algorithms 
or limited computing resources allocated to each user. Long-term usage is also a 
concern since unpredictable alterations in the ToS may eventually limit the platform's 
access and usability. Additional cloud space in Google Drive to overcome limitations 
in data storage and paid access to Google’s Cloud Computing infrastructure needs to 
be purchased to take full advantage of GEE. Nevertheless, it is important to note that 
alternatives to the use of GEE can imply much higher computation times and 
resources that may not be readily available. 
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Figure 3– Google Earth Engine main workflow (source: Google | 
https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-
lgCCrIqbNeis/htmlpresent). 

 

To fully access GEE capabilities, we use the R package rgee (Aybar 2023), which 
serves as a bridge between R and Google Earth Engine (GEE). It enables R users to 
access GEE's vast geospatial data catalogue and conduct complex analysis tasks in 
the cloud. Users authenticate with their Google accounts to link R with GEE. Using 
rgee, users write R code for geospatial analysis, which is sent to GEE's servers for 
processing. After analysis, users can retrieve results back to R for further processing 
and visualization. This integration allows R to harness GEE's geospatial capabilities, 
making it a powerful tool for wildfire-related applications. 

Processes in rgee use reticulate (Ushey et al. 2023), an R package designed to allow 
seamless interoperability between R and Python. When an Earth Engine request is 
created in R, reticulate will translate it into Python and pass it to the Earth Engine 
Python API, which converts the request to JSON. Finally, the GEE Platform receives 
the request through a Web REST API, and the response will follow the same path 
back in reverse. 

 

 

 
Figure 4 – The rgee package main workflow (source: https://r-spatial.github.io/rgee). 

 

https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/htmlpresent
https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/htmlpresent
https://r-spatial.github.io/rgee/
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2.3. FAQ – Burn severity products with the delta-based approach 

 

Delta-based products from SeverusPT map burn severity levels through different 
spectral indices (e.g., NBR, TCTs) and for different indicators comparing pre- vs-fire 
conditions (Delta, RDT and RBR). SeverusPT also uses multiple satellites (MODIS, 
Landsat and Sentinnel-2) to provide a more nuanced understanding of wildfire 
effects, profiting from different spatiotemporal resolutions and the rich image archive 
provided by these missions. This multifaceted approach, entailing multiple 
dimensions, indices and satellite missions, also enhances the accuracy and reliability 
of burn severity assessments. 

Each burn severity layer shows all wildfires that occurred for a given year at different 
temporal horizons (or windows) 3, 6, 9 and 12 months after the wildfire date. This way, 
SeverusPT delta-based products provide an integrated and seamless method of 
comparing severity levels for all wildfires occurring within a given year, independently 
of the actual start/ignition date, and at the same comparable timeframe. 

Delta-based products use multitemporal quarterly composites to aggregate image 
data (i.e., from three up to twelve months after the fire). This approach aims to 
improve image quality and remove clouds or other potential artefacts. The pre-fire 
reference is always based on the same period as the post-fire but for the year before 
(i.e., homologous year). 

The main workflow used to calculate the burn severity products in Google Earth 
Engine is shown in Figure 5. The first step consists of selecting the pre- and post-fire 
satellite images for each fire perimeter (for a given year) based on the ignition date 
annotated in the burned areas dataset. A cloud mask is applied to the images, and 
then the spectral indices are calculated for each image in the stack. Multitemporal 
aggregation follows by determining the median composites to establish baselines for 
the pre- and post-fire conditions. Burn severity indicators (delta, RdNBR, RBR) are then 
computed and spatially aggregated in the image product for each burned site. This 
process is iteratively repeated for all burned areas until the dataset is complete. 
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Figure 5 – Main workflow used to calculate burn severity products in Google Earth Engine for the “Delta-

pipeline”. 

 

The main workflow is then applied at several quarterly time steps from 3 to 12 months 
after the fire. The following figures illustrate in more detail the calculation workflow for 
SeverusPT delta products at different time steps: 

 
Figure 6 – Comparing pre- and post-fire quarterly image composites in the SeverusPT mapping system 
with the delta-based framework. Initial assessment (i.e., up to 12 months after the date of fire). 
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Figure 7 – Example of comparing pre- and post-fire images: multiple sequential windows are used to 
compare pre- vs post-fire situations in the initial assessment (from 3, 6, 9 to 12 months after the fire) 

 

In essence, SeverusPT's products offer a comprehensive and standardized means of 
assessing the impacts of wildfires, aiding in the understanding, monitoring, and 
managing these critical environmental events. 
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Figure 8 – Comparison between burn severity indicators for 20-m resolution Sentinel-2 for the Serra da 
Estrela wildfire (2022), including the delta Normalized Burn Ratio (NBR), the Relativized Difference NBR 
(RdNBR) and the Relative Burn Ratio (RBR). Severity classes were estimated using empirical percentiles 
for mainland Portugal approximated to the values proposed by US Forest Service/USGS/NASA. 
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Figure 9 – Comparison between Sentinel-2, Landsat-8 and Terra/MODIS for the Serra da Estrela wildfire 
(2022), the delta Normalized Burn Ratio (NBR). Severity classes were estimated using empirical 
percentiles for mainland Portugal approximated to the values proposed by US Forest 
Service/USGS/NASA. 

 

 

 

Q&A 

Q: To calculate the pre- vs post-fire difference, what is the pre-fire reference used? 

R: The year before the fire is used for the same period (i.e., homologous year 
reference). 

Advantages | Minimises intra-annual or seasonal phenological differences. 

Disadvantages | It enhances inter-annual differences, resulting in differences due to 
the “climatic year”. 
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Q: How many images are used to calculate the pre- and post-fire difference? 

R: Multiple images are combined to generate multitemporal composites with three-
month (or quarterly) moving windows (i.e., up to 3 months, 4 to 6 months, 7 to 9 
months and 10 to 12 months). Median aggregation is used to make image 
composites. The actual number of images used in composites depends on the 
temporal resolution of the satellite mission and image availability. 

Advantages | Increased probability of finding the best pixel without cloud cover. In 
the literature, the best results for analyzing post-fire severity were found using 
temporal aggregation/composite methods. 

Disadvantages | Computationally more complex, it requires temporal aggregation of 
multiple images. This process may not capture the “maximum” severity by 
aggregating multiple images. 

 

Q: Does the fact that severity products use quarterly composites mean that users 
must wait that amount of time to access the data? 

R: No. As soon as satellite images are available on the Google Earth Engine platform, 
it is possible to calculate the burn severity products. However, considering Sentinel-
2’s revisit frequency, this could take a maximum of 5 days (depending on the date of 
occurrence). Cloud cover may, however, decrease the quality of fast assessments or 
their feasibility. 

On the other hand, for fast burn severity assessments, it is recommended to use 
SeverusPT analysis and mapping apps (“Fire Severity Analyst”). 

 

Q: Is cloud removal performed before calculating the quarterly median? 

R: Yes. For all satellites currently available in SeverusPT products, a cloud removal 
filter is applied in each original image based on the masks available for this purpose. 

Although it is not a process capable of completely removing cloud cover, it can at 
least reduce their influence. 

 

Q: What is the level of processing of the optical images used in calculating the 
products? 

R: Level 2 (L2) – Surface Reflectance (SR) images, sometimes called Bottom-Of-
Atmosphere (BOA), are used. 

Due to the “double” interaction of the Earth’s atmosphere with the light coming from 
the Sun to/from the Earth’s surface, this results in distortions in the images captured 
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by satellite sensors. These distortions can be caused by the transmission, absorption 
and scattering of light by atmospheric components, such as aerosol particles, water 
vapour and other gases. Satellite optical L2 SR images seek to correct these 
atmospheric effects, removing or reducing their influence. These corrections use 
models and algorithms that consider spectral information from images and measured 
or estimated atmospheric parameters, such as aerosol composition and optical 
thickness. 

 

Q: Does the SeverusPT project aim to map or detect burned areas? 

R: No. The project uses updated data on burned areas from official databases in the 
analysis and severity mapping processes, including Copernicus EFFIS (link) or ICNF 
National Forest Fires Database for Portugal (link). 

Advantages | Official data is used. Less complexity in terms of data processing. Focus 
on measuring severity rather than detecting burned areas by satellite. 

Disadvantages | Less control over the severity mapping process. Unavailability of fire 
dates in the ICNF databases (only from 2014 onwards did the database have 
ignition/start dates), and there is no access to recent data (~one year gap). In the case 
of EFFIS, it focuses on larger fires and has a more “generalist” design. For EFFIS only 
from 2006, the database has ignition/start dates for wildfires (Figure 7). 

 

 
Figure 10 – Comparison between wildfires with (‘good’) and without correct dates (‘wrong’) in the 
Copernicus EFFIS dataset of burned areas. Comparisons, from left to right, are for the % of annual 
burned area, % of annual wildfires and the number of occurrences. From 2006, ignition/fire start dates 
are fully recorded in EFFIS database. 

 

https://effis.jrc.ec.europa.eu/applications/data-and-services
https://geocatalogo.icnf.pt/catalogo_tema5.html
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Figure 11 – Comparison between wildfires with (‘no date) and without start/ignition dates (‘with date) in 
the ICNF National Burnt Areas Database for Portugal. Comparisons, from left to right, are for the % of 
annual burned area, % of annual wildfires and the number of occurrences. Only from 2014, >50% of 
annual burned area and >75% of occurrences have ignition dates in this database. 

 

Q: Is the fire date explicitly used? 

R: Yes. The specific dates of each fire are used (i.e., “fire or event-specific severity 
assessment”). This means that products contain temporally standardized data. In 
other words, for products based on the “delta” approach, despite the different dates 
of each fire, all pixels in the severity products represent the difference between the 
pre-fire and 3, 6, 9 or 12 months after the fire. 

Advantages | Burn severity is calculated in a specific way for the event, thus 
minimizing differences related to the timing or phenology of the fire (i.e., much 
higher comparability between events is obtained). Allows the user to compare all fires 
inside or outside the “fire season” for a given year. Better for understanding severity 
as a fundamental variable for fire regime. 

Disadvantages | Requires knowledge of the dates of occurrences. Unfortunately, there 
are many information gaps and uncertainties about fire dates (especially concerning 
ICNF data; see Figure 10 and Figure 11). 

 

Q: What is the minimum size of the burned areas considered for severity mapping 
purposes? 

R: The minimum area considered is 10 hectares. Based on a consultation carried out 
through questionnaires (Task 1 – co-design) and considering the spatial resolutions of 
the three satellites used (MODIS: 250 – 1000m, Landsat: 30m and Sentinel-2: 10 – 
20m), this value was the one that achieved the greatest consensus. 
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Advantages | Less complexity in terms of processing (less fire perimeters to handle). 
Focus on measuring the severity of fires with a significant impact and size equal to or 
greater than the national average. Considering the size of the burned areas, fires >= 
10 ha total ca. 90% of the national burned area (on average per year). 

Disadvantages | Information about smaller occurrences is lost. 

 

Q: Are satellite-based severity products evaluated in the field? 

R: Yes (see section 6 for details). SeverusPT data products are evaluated in the field 
using a standardized multi-stratum protocol called GeoCBI (modified Composite 
Burnt Area Index). 

The GeoCBI protocol and index evaluates the severity of the burned area for several 
factors in each of the following strata: (a) soil (including litter, duff, fine and coarse 
fuels), (b) herbaceous cover, shrubs and trees below one meter, (c ) shrubs and trees 
between 1 and 5 meters, (d) tall trees from 5 to 20 meters and (e) very tall trees above 
and 20 meters. The severity of each factor is evaluated from 0 (no effect) to 3 (very 
high severity). The final GeoCBI value is determined by the weighted average of the 
various factors weighing the coverage proportion of each stratum. 

As of the date of this document (October 2023), 111 validation points were collected 
from mainland Portugal’s north-to-centre regions. More surveys are planned to 
complement this assessment.



 

 23 

3. Trajectory-based approach 

 

     INFO: The trajectory-based pipeline and products are still under active 
development and will be added in the future to the SeverusPT Data Portal 

 

3.1. The multidimensional ecosystem functioning framework 

 

As an integral part of the natural dynamics of ecosystems in several biomes, fire can 
profoundly impact many aspects of their structure, composition, and functioning (San-
Miguel-Ayanz et al. 2013, Adámek et al. 2016). Post-fire assessment and monitoring 
based on attributes of ecosystem functioning are of particular interest since fire can 
cause rapid modifications in multiple di­mensions of matter and energy flows in 
ecosystems. Furthermore, attributes of ecosystem functioning exhibit quicker 
responses to disturbances than structural or compositional ones and are more 
directly connected to ecosystem services (Alcaraz-Segura et al. 2008). 

Wildfires play a crucial role in the terrestrial biosphere carbon cycle (Wei et al. 2018) — 
e.g., in biomass (Pellegrini et al. 2018, Sparks et al. 2018) and primary production 
(Leys et al. 2016). Furthermore, water supply and quality (Smith et al. 2011, Santos et 
al. 2015, Carvalho-Santos et al. 2019), as well as soil moisture and vegetation water 
content (Ebel and Martin 2017, McGuire and Youberg 2019, Senf and Seidl 2020), 
can also be directly or indirectly affected by wildfire disturbances. Moreover, different 
aspects of energy balances, such as albedo (e.g., Gatebe et al. 2014, French et al. 
2016, Saha et al. 2017, Quintano et al. 2019), latent heat (e.g., Sun et al. 2019), and 
sensible heat (e.g., Liu et al. 2018, Maffei et al. 2018) can also suffer profound 
alterations induced by wildfires. 

In summary, post-fire processes and the effects of wildfires on ecosystems are 
multidimensional (Donohue et al. 2013, Donohue et al. 2016), with post-fire 
trajectories of different dimensions of ecosystem functioning exhibiting different 
patterns (Ryu et al. 2018). To tackle this challenge, remote sensing techniques have 
been increasingly employed to assess and monitor different aspects of the post-fire 
period due to lower costs and improved technology for providing up-to-date 
information on the status of ecosystems. Indeed, indicators derived from satellite 
image time series (SITS) can provide information on the dynamics of multiple 
dimensions of ecosystem functioning, thus enabling the ability to assess and map the 
spatially and temporally heterogeneous effects of wildfire disturbances on 
ecosystems (Smith et al. 2011). 

To that end, a comprehensive framework based on remotely sensed data was 
established by Marcos et al. (2019, 2021, 2023) that provides several indicators of 
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both burn severity and post-fire recovery in short-, medium-, and long-term in an 
integrative way. These indicators are extracted from metrics computed from SITS-
derived post-fire trajectories informing on each of the following key attributes of 
ecosystem functioning: 

i) primary productivity; 
ii) water content in vegetation and soil; 
iii) surface albedo; and 
iv) sensible heat. 

 

3.2. General approach and input data 

 

The SeverusPT trajectories-based burn severity product takes advantage of the 
framework for enhanced multidimensional satellite-based post-fire assessment and 
monitoring based on ecosystem functioning described in Marcos et al. (2019, 2021, 
2023). In this product, per-pixel estimates of burn severity are obtained through a 
complementary approach to the more "traditional" one employed in the delta-based 
product by extracting key features of a curve that is constructed from de-noised and 
de-seasonalized post-fire observations — i.e., the post-fire trajectory. 

To that end, satellite image time-series (SITS) with high temporal resolution (i.e. low 
revisiting times) are preferable since enhanced precision is paramount for obtaining 
timing-related estimates. In this sense, data products from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites offer high 
temporal resolutions — ranging from 8- or 16-day composites to a maximum of four 
observations per day —, with an archive spanning more than two decades (starting in 
2000), despite their moderate to coarse spatial resolutions (250-1000 m). 

 

     NOTE: Despite the Terra orbit drift, starting in late October 2022 and affecting all 
MODIS products derived from this satellite, the MODIS sensor onboard the Aqua 
satellite will predictably continue operating at least until 2026 (see 
https://aqua.nasa.gov/, consulted in 2023-11-28).  

In any case, other missions — e.g., Sentinel-2, Sentinel-3, VIIRS — can provide SITS data 
meeting the data requirements (e.g. spectral, spatial, and temporal resolutions) of the 
framework employed in the SeverusPT trajectory-based burn severity product. 

 

To derive proxies for the first three of the four abovementioned key attributes of 
ecosystem functioning, SITS were extracted from the Terra-MODIS Surface 
Reflectance product MOD09A1 (8-Day L3 Global 500 m, Collection 6; (Vermote 

https://aqua.nasa.gov/
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2015)) by applying the Tasseled Cap Transformation (TCT; see (Lobser and Cohen 
2007, Marcos et al. 2019, 2021)). This transformation consists of rotating principal 
component axes derived from a global sample to maximize the association of each 
axis with the bio­physical parameters of photosynthetically active vegetation, 
vegetation water content and soil moisture, and albedo (Mildrexler et al. 2009). In this 
way, three sensor-specific linear combinations of bands in the visible, near-infrared, 
and shortwave infrared regions of the electromagnetic spectrum (Lobser and Cohen 
2007), are derived: Greenness (TCTG), Wetness (TCTW), and Brightness (TCTB). 
Finally, land surface temperature (LST) — a well-known proxy of sensible heat — is a 
calibrated measure of the thermal emissivity of the land surface (Duan et al. 2019). For 
the SeverusPT trajectory-based burn severity product, the day-LST from the MODIS-
Terra Land Surface Temperature/Emissivity product MOD11A2 (8-Day L3 Global 1000 
m, Collection 6; (Wan et al. 2015)) was used, rescaled to degrees Celsius. All four 
abovementioned satellite-based proxies of ecosystem functioning — i.e., TCTG, 
TCTW, TCTB, and LST — have been successfully used for fire-related applications 
(Coops et al. 2008, San-Miguel-Ayanz et al. 2013, Bowman et al. 2015, Marcos et al. 
2019, Quintano et al. 2019, Marcos et al. 2021). 

 

3.3. Trajectory-based product calculation 

 

The SeverusPT trajectory-based burn severity product's processing pipeline was 
mainly undertaken within the R statistical programming environment (R Core Team 
2021). First, the MODIStsp R package (Busetto and Ranghetti 2016) was used to 
download MODIS SITS, reproject them to the WGS84/UTM29N coordinate system 
(EPSG: 32529) and convert the native HDF files into GeoTIFF files. The ensuing 
processing tasks currently use functions from the raster package (Hijmans 2020) — 
however, future versions of the pipeline will use the terra package (Hijmans 2023) 
instead. The Python package rasterio (Gillies et al. 2013) was also used for faster 
implementations of some specific tasks involving operations with large SITS. 

To minimize the influence of spurious values, locally extreme values (i.e. 
minima/maxima) were filtered from all SITS using the Hampel identifier (Hampel 
1971, 1974), with the identified values replaced with local medians. Although quality 
control/assessment (QC/QA) layers (e.g., cloud cover) are included with MODIS 
products, the current version of the SeverusPT trajectory-based burn severity product 
does not explicitly use that information due to much-increased processing times and 
unsatisfactory results in a preliminary analysis. However, future versions of the 
processing pipeline are planned to add this step for thoroughness. 

To extract meaningful post-fire resilience metrics from SITS, seasonal variations (i.e., 
fluctuations in the data with a fixed and known frequency) must first be separated 
from long-term changes due to fire disturbances. To that end, the Seasonal and 
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Trend decomposition using Loess (STL; (Cleveland et al. 1990, Hyndman and 
Athanasopoulos 2018)) algorithm was used for decomposing time series through a 
loess smoother to extract the seasonal, trend, and remainder components of time 
series, as described by the following expression: 

𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 

where, at period t, yt is the original time series, St is the seasonal component, Tt is the 
trend component, and Rt is the remainder component, all with the same units. More 
specifically, the STL decomposition was employed to obtain: 

i) seasonally adjusted time series (At); i.e., the original time series with the 
seasonal component removed: 

𝐴𝑡 = 𝑦𝑡 − 𝑆𝑡 = 𝑇𝑡 + 𝑅𝑡 

to establish pre-fire reference conditions; and 

ii) isolated long-term trend component time series, used for calculating 
incremental median values (i.e., stepwise medians based on moving windows) 
in the post-fire period: 

𝑇𝑡 = 𝑦𝑡 − 𝑆𝑡 − 𝑅𝑡 = 𝐴𝑡 − 𝑅𝑡 

The pre-fire reference conditions were those within the range of one median absolute 
deviation from the median (i.e., median ±1 M.A.D.) of At (i.e., in the yy-axis) within the 
three years prior to the date of the fire occurrence. 

Following the trajectory-based approach, the first post-fire directionality inflection 
point (tINF; Figure 12) must be determined to derive burn severity estimates from SITS. 
This moment in the post-fire trajectory corresponds to a shift in the values of the trend 
component change from divergent from- to convergent with the pre-fire reference 
conditions. The tINF thus translates into an estimate of the date when the disturbance 
period ends, and the recovery starts. Conversely, the duration of the period between 
the date of the fire occurrence (tFIRE) and tINF (i.e., in the time axis) can be regarded as 
an estimate of short-term recovery speed (Marcos et al. 2023). Burn severity metrics 
can then be extracted based on the difference (i.e., distance along the y-axis) 
between the pre-fire conditions and some (simple or aggregated) values at or around 
tINF, translating into the magnitude of the break in the time series. 
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Figure 12 – Generic illustration of metrics extracted from post-fire trajectories, derived from SITS, that can 
be related to different ecosystem functioning dimensions, such as the S95 burn severity metric used in 
the trajectory-based burn severity product. 

 

Among those metrics, the simplest one can be defined by the difference between the 
pre-fire median and the single value of At at tINF. However, more robust alternatives 
can be obtained from the difference between the pre-fire median and an aggregated 
value extracted from applying a given statistic to a finite subset of values of At after 
tINF. Following Marcos et al. (2023), the S95 burn severity indicator (see Figure 12) is 
based on the metric calculated using the 95% percentile of At values up to one year 
after tFIRE (see Figure 11). Alternative indicators can instead be derived based on, e.g., 
the 99% percentile or even the maximum value within the same period. These 
indicators aim to translate the (near-)maximum short-term impact of the wildfire 
disturbance on each dimension of ecosystem functioning and can also be regarded 
as approximate measures of the level of ecosystem resistance to those disturbances 
(De Keersmaecker et al. 2015, Meng et al. 2021). 
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Figure 13 – Example of the S95 burn severity indicator for two burned areas in mainland Portugal (a and 
b), extracted from SITS related to the following key attributes of ecosystem functioning: (i) primary 
productivity (TCTG); (ii) water content in vegetation and soil (TCTW); (iii) surface albedo (TCTB); and (iv) 
sensible heat (LST). (Note that burn severity, as translated by the S95 indicator, can exhibit either (or 
both) negative and/or positive values, depending on the specific satellite-based proxy variable — 
however, in this figure, darker colors always translate higher burn severity than lighter colors, regardless 
of sign.)  
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4. SeverusPT Data Portal 

 

The SeverusPT data portal provides a centralized gateway to access and download 
the project’s data and metadata. Data access has two primary levels: 

 

• Level 1: includes the main products, which can be defined as directories with 
datasets with specific calculation approach/pipeline, severity indicator, satellite 
spectral/biophysical index, satellite mission, burned area dataset and version; 

 

• Level 2: image data files in GeoTIFF format containing each product’s burn 
severity estimates and accompanying metadata. Beyond the elements 
identified within a specific product (i.e., approach, severity indicator, spectral 
index, etc.), each file pertains to a specific year, post-fire temporal assessment 
window (up to 3, 6, 9 or 12 months after the fire), and coordinate system. 

 

4.1. Level 1 – data products 

 

In a nutshell, products are a set of directories in the SeverusPT data portal with 
datasets by calculation approach/pipeline, severity indicator, satellite 
spectral/biophysical index, satellite mission, burned area dataset and version. 

Product names follow specific rules and conventions for organizing data repositories 
(the full version of the name description can be found at the link 
https://bit.ly/spt_product_names). At the product level, the following name 
components are used: 

 

ProjectAccronym - ApproachCode - SeverityIndicator - BaseIndex - PlatformCode - 
BurnedAreaDataset - VersionNumber 

 

Example: 

SPT-D-DELTA-NBR-L8-E-v01 

 

Description of name components: 

SPT – Project acronym used as a prefix for every product and filename; 

https://bit.ly/spt_product_names
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D – ‘Delta’ method or pipeline;  

DELTA – Uses the simple difference severity indicator (DELTA = pre_fire – post_fire); 

NBR – Normalized Burn Ratio (NBR) spectral index; 

L8 – Landsat-8 satellite; 

EFFIS – Copernicus EFFIS burned areas dataset for mainland Portugal.  

v01 – The major version number is 1. 

 

 
Figure 14 – SeverusPT Data Portal showing the list of products. Filters by satellite mission, burnt area 
dataset, spectral index and severity indicator are shown on the top. Login and registration are located on 
the left side. 

 

4.2. Level 2 – data and metadata files  

 

SeverusPT data products are available in single-band GeoTIFF raster format 
containing each product’s burn severity estimates along with metadata. Beyond the 
elements identified within a specific product (i.e, approach, severity indicator, spectral 
index, etc.), each file pertains to a specific year, post-fire temporal assessment window 
(up to 3, 6, 9 or 12 months after the fire), and coordinate system. 

 

The image data format has the following specifications: 
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● The number format is of the signed integer type with 32-bits / INT4S with 
values between -2,147,483,647 to 2,147,483,647 (written in Little-endian; 
Intel, II) 

● The scale factor (multiplicative) is 0.0001 (allowing to obtain decimal values 
for each indicator in the “correct” scale) 

● “No Data” Value: -2,147,483,648 

● Spatial resolution is variable: 20-m Sentinel-2 / 30-m Landsat / 250-m MODIS 

● Two designed coordinate systems are used to make the data available: 

o WGS 1984/UTM 29 N (SRID ID: 32629) 

o ETRS 1989/PT TM06 (SRID ID: 3763) 

● Units in meters 

 

 

 
Figure 15 – SeverusPT Data Portal showing the list of files contained in a product. 

 

 

 

 



 

 32 

At Level 2 – Data files – the name components are as follows (separated by 
underscores): 

 

ProjectAccronym _ SeverityIndicator _ BaseIndex _ SatCode _ BurntAreaDataset _ 
ReferenceYear _ RefPeriods _ ReferenceSystem _ CalculationDate _ VersionNumber 

 

Example: 

SPT_DELTA_NBR_S2MSI_E2017_R003P006_32629_20221001_v01 

 

Description of name components: 

SPT – Project acronym used as a prefix for every product and filename; 

DELTA – Severity image of the burned area (observed/historical) obtained by the 
‘Delta’ method using the  

NBR – Spectral index used, in this case the Normalized Burn Ratio (NBR) 

S2MSI – Sentinel-2/MSI images. 

E2017 – The burned area dataset is EFFIS for year 2017. 

R003P006 – Severity estimates were obtained by comparing composite images 
quarterly (R003) and up to 6 months post-fire (P006). That is, the quarter that includes 
months 4, 5 and 6 after the fire (and compared with the same quarter for the previous 
year) 

32629 – The coordinate system uses the EPSG code corresponding to the projected 
coordinate system Datum WGS 1984 UTM 29N projection.  

20221001 – Data was processed on October 1, 2022.  

v1 – The major version number is 1. 
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4.2.1. Metadata 

 

Metadata is available for each raster file in several formats, including JSON, txt and 
csv. Each metadata file includes information regarding the aspects displayed in Table 
2. 

 

Table 2 – List of metadata fields included along with product files. 

Parameter Description 

ProjectAcronym SeverusPT 

ProjectName A web-based data product and service for fire severity 
assessment and prediction in mainland Portugal 

ProjectWebsite Project portal/website: https://severus.pt/en/  

ContactEntity CIBIO/InBIO/BIOPOLIS/ECOCHANGE Team - University of 
Porto 

ContactEmail The main email for contact: geral@severus.pt  

ProductName Product name in extended form 

ProductType Observed historical severity or predicted potential severity 

SpatialResolution Spatial resolution 

TemporalResolution Temporal resolution 

CoordRefSystem Coordinate Reference System used to represent data 

CalculationDate Calculation date in year, month, day format 

CalculationPlatforms R/RStudio, Google Earth Engine or both. Version code is 
appended if needed 

BurntAreaDataset The reference dataset used to obtain burned area polygons 

https://severus.pt/en/
mailto:geral@severus.pt
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BurntAreaDatasetURL Link for the reference dataset used to obtain burned area 
polygons 

ReferenceYear Reference year for the burned area dataset  

MinFireSize Minimum fire size threshold (in hectares) 

SatCollectionData Satellite data used for calculations 

SatProcLevel Processing level for optical data, e.g., L1C - TOA reflectance, 
L2A - surface reflectance 

SatColVersion Version of the satellite data collection 

CloudMaskUsed Does the product use cloud masking? From where? 

CloudMaskMethod Cloud masking method employed in pre-processing 

OtherCorrections 
Other corrections applied in pre-processing (e.g., peak filtering, 
smoothing, time-series decomposition). Parameters may be 
added if needed 

BaseIndex Acronym and a short description of the spectral index or 
biophysical parameter used 

BaseIndexFormula Formula of the spectral index 

SeverityIndicator Acronym name and a short description of the severity indicator 
calculated 

SeverityIndicatorForm Formula for the severity indicator such as delta or relative delta 

CompAggMeasure The statistical measure used to make the image composite, e.g., 
Median or Average 

PreFireType Type of the pre-fire period used: fixed/static or relative/moving 
in reference to the previous/homologous year 

PreFireRefPeriod The number of months used to calculate the pre-fire period 
(should be equal when using option 
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PreFireType=relative/moving but it can be different when using 
option PreFireType=fixed/static) 

PostFireType 
Indicates the type of post-fire period used, either as a moving 
window with fixed months or variable for trajectory-based 
methods 

PostFireRefPeriod 
The number of months used to calculate the post-fire period, or 
the number of months used to search the 95% percentile in the 
trajectory-based method 

ScaleFactor The scale factor applied to the product 

VersionNumber 
Version number of the product/collection. Composed of a 
single digit which denotes changes only to the major version 
(e.g., v01, v02, etc.). 

VersionFullNumber 
Full version number of the product/pipeline only presented at 
metadata level. Composed of three digits which denote the 
major.minor.patch versions (e.g., v0.1.0). 

 

 

Table 3 – An example of txt metadata accompanying data files from SeverusPT with a table formatted in 
markdown style. 
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4.3. Data Portal tutorial and guidelines for use 

 

SeverusPT Data Portal is characterized by its user-friendly interface and robust 
functionality, allowing for various user roles. This section provides a comprehensive 
guide on the usage of the SeverusPT platform, detailing the capabilities and 
permissions associated with each user role. 

 

User Roles and Permissions 

The SeverusPT platform accommodates four distinct user roles, each with a unique 
set of permissions: 

1. Guest: Unregistered users who have access to basic viewing and filtering 
capabilities. 

2. Consult: Registered users who, besides Guest permissions, can download 
data products or their data files. 

3. Manager: Users who can add Data Products, manage data files, and Consult 
permissions. 

4. Admin: Users with the same permissions as the Manager and complete 
control over the platform. 

 

Guest role 

Guest, or unregistered users, can: 

• View data products and their associated names, as well as descriptions of 
components. (Figures Figure 14 and Figure 15) 

• Filter data products based on Platform Code, Burnt Area Dataset, Base Index, 
and Severity Indicator. (Figure 16) 

• Access the content of data products, including data and metadata files. 
(Figure 17) 

• View a description of the components of the data file names, metadata, and a 
severity map. (Figure 17) 

• Filter data files by Reference Year, Reference Periods, and Reference System. 
(Figures Figure 18, Figure 19 and Figure 23) 
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Figure 16 - Visualization of data products and their associated names, as well as descriptions of 
components. 

 

By clicking the “Name Details” button , users can view the product's description by 
its name components. 

 

 
Figure 17 - Visualization of descriptions of components at the Data Product level. 
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Figure 18 - Example of filtering Data Products, in this case by the satellite platform/mission. 

 

To access the content of data products, users can click on the data product name, 
double click on the corresponding table row or click the “View Content” button ( ). 

 

 
Figure 19 - Visualization of the content of a data product – in the example Delta NBR for Landsat-8 
mission based on EFFIS burned areas (version 1). 
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By clicking on “Name Details” button ( ) users can view descriptions of components. 

 

 
Figure 20 - Visualization of descriptions of components at the data files level. 

 

By clicking on “View Metadata” button ( ) users can view details of metadata files. 

 

 
Figure 21 - Visualization of details of metadata files. 
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By clicking on the “View Map” button ( ), users can view the burn severity 
map/product. 

 
Figure 22 - Visualization of severity map. 

 

 
Figure 23 - Example of filtering Data Files – in the example, the filter acts over the year of the data. 

 

Consult role 

Registered and authorized users have all the permissions of a Guest, with the added 
ability to download data products or their data files. Registration requires an email 
and password, followed by account confirmation through a confirmation email. 
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Figure 24 - User registration form. 

 

 
Figure 25 - Confirmation email sent to the user. 

 

 

 

 

 

 

 

 

 



 

 42 

After confirming the email the user can access the Data Portal through the following 
login form: 

 
Figure 26 - Registered user login. 

 

To download the burn severity data, registered users can select/check the intended 
files and download them by pressing the “DOWNLOAD” button in the bottom-right 
corner: 

 
Figure 27 - Selection and download of data products. 
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Manager role 

Managers have all the permissions of the “Consult” role but with additional 
capabilities to: 

• Add Data Products (Figure 28); 
• Add data files to the created Data Products (Figure 29); 
• View errors that may exist from incorrect nomenclature or missing data files 

(Figure 30); 
• Generate an API key to upload data files and obtain information about the 

aforementioned errors (Figure 31). 

 
Figure 28 - Creation of Data Product. 

Managers can add Data Files to Data Products by dragging and dropping files to the 
Data Portal or selecting them from local files. 

 
Figure 29 - Upload of data files. 
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By clicking on the “Name Details” button ( ) Managers can view errors that may exist 
from incorrect nomenclature or missing data files. 

 
Figure 30 - Visualization of errors that may exist from incorrect nomenclature or missing data files. 

 

 

 
Figure 31 - Generation of API key on the Profile page. 
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5. In situ assessment and validation of satellite products   

 

5.1. Spatial sampling strategy 

 

Field surveys to assess and validate satellite-based burn severity products were 
conducted from May 2022 to August 2023. This survey campaign focused on 
assessing wildfires from the 2022 fire season spread across mainland Portugal. 

We implemented a purposive stratified approach considering fire size, location, and 
main vegetation type to select burned areas. The specific locations to survey were 
pre-defined using ancillary GIS layers related to roads, vegetation and land cover, 
topography and burn severity levels and locally adjusted given the access conditions 
verified in the site. In tandem, these selection criteria allowed us to circumvent 
limitations related to accessibility to fire perimeters while maximizing national 
coverage and the diversity of post-fire situations. It also allowed us to cover the 
diversity of post-fire conditions nationwide instead of focusing our limited resources 
on specific fire occurrences. For this reason, we stopped surveying a specific burned 
area once its main conditions (in terms of geomorphology, main vegetation types, 
and burn severity levels) were mainly covered. Approximately 111 sites were surveyed 
using the Geometrically Structured CBI (GeoCBI) protocol and index in 28 burned 
areas from the north to centre and south regions of mainland Portugal. 
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Figure 32 – Plot locations where GeoCBI was estimated in the field. Data can be checked through the 
SeverusPT web viewer for field data: https://severuspt.bitbucket.io/. 

 

5.2. GeoCBI – Geometrically Structured Composite Burn Index 

 

A modified version of the Composite Burn Index (CBI), known as the Geometrically 
Structured Composite Burn Index (GeoCBI), was developed to enhance the 
assessment of burn severity by accounting for the influence of vegetation cover on 
the reflectance characteristics of different strata within a given burned area (De Santis 
and Chuvieco 2009). The GeoCBI protocol and index were adopted in the SeverusPT 
project to obtain in situ estimates of burn severity. 

In the field, burn severity was visually evaluated using the GeoCBI protocol and 
aggregate index, employing a continuous numeric scale that spans from 0 to 3. This 
scale was used to quantify the cumulative effects of fire in relation to pre-fire 
conditions. The GeoCBI field protocol utilizes a hierarchical and multi-layered 
sampling approach, segmenting the plot into five distinct strata: (i) substrates – 
encompassing the ground surface, litter, and duff layers; (ii) herbs, low shrubs, and 
trees under 1 meter – this category includes vegetation under 1 meter in height (iii) 
tall shrubs and trees from 1 to 5 meters – comprising vegetation ranging from 1 to 5 
meters in height; (iv) intermediate trees from 5 to 20 meters – encompassing trees 
with heights between 5 and 20 meters, and; (v) tall trees over 20 meters – this 

https://severuspt.bitbucket.io/
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category pertains to trees exceeding 20 meters in height. These strata are then 
subdivided into specific aspects and individually assessed using particular criteria. 
These criteria encompass factors such as the percentage of soil layer and vegetation 
consumed, the char height observed on tree boles, and the resprouting capacity of 
burned vegetation. For each subcategory, decimal values ranging from 0.0 to 3.0 are 
assigned, representing the full spectrum of possible burn severity, from no 
discernible impact (0) to a high level of impact (3). 

To calculate the GeoCBI for a particular stratum, the scores from all the evaluated 
items or subcategories are averaged and then weighted by their respective fraction of 
coverage (Fcov). This comprehensive approach yields a nuanced and detailed 
assessment of burn severity across the various strata within a burned area, offering 
valuable insights into the ecological impact of the fire event. 

𝐺𝑒𝑜𝐶𝐵𝐼𝑠 =
1

𝑛
∑ 𝐼𝑠,𝑖

𝑛

𝑖=1

 

(Eqn. 5) 

𝐺𝑒𝑜𝐶𝐵𝐼𝑠 is the average composite burn index for a given stratum (s), whereas 𝐼𝑠,𝑖 is an 
evaluation item or subcategory for a given stratum. The final overall GeoCBI is a 
weighted average of the five strata scores. 

𝐺𝑒𝑜𝐶𝐵𝐼𝑡𝑜𝑡𝑎𝑙 =
∑ 𝐶𝐵𝐼𝑠 × 𝐹𝑐𝑜𝑣𝑠

5
𝑠=1

∑ 𝐹𝑐𝑜𝑣𝑠
5
𝑠=1

 

(Eqn. 6) 

In each particular situation, depending on site vegetation and conditions, we 
assessed which strata and which evaluation items could be or were relevant to be 
quantified at the plot level. If it was impossible to accurately assess a particular 
descriptor, we decided not to include it in the evaluation (e.g., uncertain estimation of 
the % frequency of living due to the short time since fire). 

To avoid differences in the protocol application across surveys, the same team 
conducted the assessments based on rigorously defined and previously agreed 
criteria (supported by CBI and GeoCBI literature; e.g., (Key and Benson 2006, De 
Santis and Chuvieco 2009)) and by obtaining an average consensus of individual 
scores. 

During fieldwork, we employed a centimeter-precision GNSS receiver/station 
(Stonex® S850A) with RTK-enabled corrections to obtain the central coordinates of 
the survey plot (averages HRMS=9.7 cm, VRMS=15.1 cm, PDOP=1.0). Tree height 
was accessed by a laser telemeter (Nikon® Forestry Pro II) to avoid errors when 
attributing the tree strata. 
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Figure 33 – Table showing the GeoCBI protocol divided into plot data, A – D strata, evaluation items and 
criteria. Fcov is the fraction cover of strata B to D. The severity scale attributed to each descriptor is given 
by the percentage values in each column and assessed locally. 
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Table 4 – Severity categories for GeoCBI 

Severity 
value 

Severity 
category 

Definition obtained from field  

0 Unburned 
Unburned and unaffected areas, sometimes within a 
burned perimeter. Vegetation is green, and soils are 
unaffected. 

0.01 – 0.10 Very-low 

Vegetation and ground surface are very lightly affected 
by the fire. Minimal to no vegetation mortality. Limited 
impacts on soil properties. Very fast recovery of 
vegetation 

0.1 – 1.24 Low 
The surface area of the fire has minor changes in its 
coverage and little mortality in terms of plant structure. 

1.25 – 2.24 Moderate 
The area displays a mix of effects between the 
unchanged and high categories. 

2.25 – 3.00 High Vegetation has high mortality rates. 

 

 



 

 50 

 
Figure 34 – Examples of GeoCBI from some surveyed areas at three different severity levels (low, 
moderate and high) and for two main vegetation types: forests vs shrublands. 
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5.3. Comparison between in situ GeoCBI and satellite burn severity estimates 

 

Two methods were implemented to assess and compare in situ GeoCBI and satellite 
burn severity estimates: 

i. Non-parametric linear correlation (Spearman method) and nonlinear 
correlation (proposed by Ranjan and Najari (2020)), and, 

 

ii. A nonlinear exponential model adapted from (Miller and Thode 2007, Parks et 
al. 2014) in the following form: 

 

𝐺𝑒𝑜𝐶𝐵𝐼 =  𝑎 + 𝑏 ∙ 𝑒𝑐∙𝑆 

(Eqn 3) 

 

Parameters a, b and c are obtained through nonlinear estimation in R using function 
nls from the stats package (R Core Team 2023). S is the severity indicator being 
assessed (e.g., dNBR). 

To account for observer uncertainty and spatial variability in GeoCBI field surveys, the 
comparison between satellite-based spectral indices and field GeoCBI was 
performed at three extents: (i) point level (using the exact coordinates of the central 
point of the plot), (ii) 20 m buffer around the central point and (iii) a 30 m buffer. 

Because products are computed at several quarterly sliding windows (up to 3, 6, 9 or 
12 months after the fire), and field surveys have distinct times since the fire, we 
matched the two by selecting the product whose aggregation period contained the 
particular survey date. 

 

5.4. GeoCBI descriptive statistics 

 

The GeoCBI protocol allows assessing in situ burn severity across multiple strata, 
providing valuable insights into the impacts of wildfires. The average of stratum A 
(A_Average; soil and substrates), with a GeoCBI of 1.4 (±std-deviation of 0.7), shows 
relatively moderate to low burn severity. In contrast, the average for the B stratum 
(herbs, low shrubs and trees with less than 1 meter) exhibits a moderate GeoCBI of 
1.7 (±0.8), indicating a somewhat higher burn severity and impact on living 
vegetation. The average GeoCBI of stratum C (tall shrubs and trees from 1 to 5 
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meters) was 2.0 (±0.8), showing a relatively higher burn severity, particularly affecting 
leaf area index, altered foliage and living vegetation. For the D stratum (intermediate 
trees with 5 to 20 meters), the GeoCBI averages at 1.5 (±0.8), signifying moderate 
burn severity with variable impacts on green vegetation and char height. Although 
the E stratum (tall trees ≥ 20 meters) is limited in data, it has an average GeoCBI of 0.6 
(±0.7), indicating relatively low burn severity. Regarding the range (minimum and 
maximum values) for the average of each descriptor, we found the full scope of 
conditions found from strata A to D ranging from 0 to 2.6 and 3.0 – i.e., from no 
damage to complete consumption of these layers—exception for the E stratum 
showing a range of 0.0 to 1.3. 

Overall, GeoCBI values average 1.5 (±0.7), showing moderate burn severity but 
ranging from moderate-low to moderate-high severities. The range is bounded 
between 0.0 for unburned sites up to 2.7. 

 

Table 5 – Descriptive statistics for the GeoCBI samples by stratum and total. Nobs – number of 
observations for each descriptor, Mean – arithmetic average, StDev – standard deviation, Min – Minimum, 
Median – median, MAD – Median absolute deviation, Max – Maximum value. 

Parameter Nobs Mean StDev Min Median MAD Max 

A1_LitterLF 104 1.4 0.8 0.0 1.5 0.7 2.7 

A2_Duff 102 1.2 0.7 0.0 1.2 0.7 2.5 

A3_MedHeavyF 57 1.7 0.8 0.0 1.8 0.6 3.0 

A4_SoilRockCol 103 1.5 0.8 0.0 1.5 0.7 2.8 

A_Average 106 1.4 0.7 0.0 1.5 0.7 2.6 

B1_PercFolAlt 83 2.4 0.9 0.0 2.8 0.3 3.0 

B2_FreqLiv 71 1.7 1.0 0.0 2.0 1.2 3.0 

B3_NewSpro 96 1.3 0.9 0.0 1.2 1.1 2.9 

B_Average 100 1.7 0.8 0.0 1.8 0.7 3.0 

B_Fcov 93 0.6 0.3 0.1 0.6 0.3 1.0 

C1_PercFolAlt 76 2.3 0.9 0.0 2.5 0.6 3.0 

C2_FreqLiv 59 1.5 0.9 0.0 1.5 1.2 2.9 

C3_LAIchange 76 2.0 0.9 0.0 2.3 0.7 3.0 

C_Average 75 2.0 0.8 0.0 2.2 0.7 2.9 

C_Fcov 69 0.5 0.3 0.1 0.5 0.3 1.0 

D1_PercGreen 61 1.9 1.0 0.0 2.2 1.0 3.0 

D2_BlkBrown 58 1.7 0.8 0.0 2.0 0.7 3.0 

D3_FreqLiv 57 0.8 1.0 0.0 0.3 0.4 3.0 

D4_LAIchange 61 1.3 0.9 0.0 1.2 1.3 2.8 
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Additionally, the median TSF (time since fire in days) is 279.0 days, suggesting that, 
on average, the assessments were conducted approximately 279 days (~9 months) 
after the fires occurred within the initial assessment period of up to twelve months. 
The median absolute deviation is 80.1 days.  

 

 

D5_CharHeight 60 1.9 0.9 0.0 2.2 1.0 3.0 

D_Average 61 1.5 0.8 0.0 1.5 0.9 3.0 

D_Fcov 58 0.7 0.2 0.2 0.7 0.1 1.0 

E1_PercGreen 3 0.5 0.5 0.0 0.5 0.7 1.0 

E2_BlkBrown 3 0.3 0.3 0.0 0.5 0.0 0.5 

E3_FreqLiv 3 0.5 0.9 0.0 0.0 0.0 1.5 

E4_LAIchange 3 0.6 0.7 0.0 0.5 0.7 1.3 

E5_CharHeight 3 1.2 1.0 0.0 1.5 0.7 2.0 

E_Average 3 0.6 0.7 0.0 0.6 0.9 1.3 

E_Fcov 2 0.2 0.1 0.1 0.2 0.1 0.3 

GeoCBI 111 1.5 0.7 0.0 1.6 0.6 2.7 

TSF_days 111 254.5 108.6 12.0 279.0 80.1 386.0 
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Figure 35 – Box and violin plots with GeoCBI descriptive statistics by stratum and total. n – number of 
observations by stratum and descriptor. Time-since-fire (difference in days between the fire and the 
sampling dates) and the Fractional cover (Fcov) are also presented. 
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5.5. In situ validation/evaluation results 

 

Overall (as of October 2023), SeverusPT products agreed well with GeoCBI field 
measures of burn severity. The best linear correlation results are bounded between 
0.64 and 0.71. Sentinel-2 and the NBR spectral index with RBR generally ranked 
higher when compared to Landsat-8. For nonlinear correlation, results are between 
0.65 and 0.76, with best results for Landsat-8 TCTG, closely followed by Sentinel-2 
NBR spectral index with RDT or RBR indicator.  

The results for the nonlinear model validation were similar, with the best marks 
attained by the RdNBR, RBR, and dNBR indicators (R2= 0.64, 0.62, and 0.60, 
respectively). 

 

5.5.1. Results for linear and nonlinear correlation 

 

Table 6 – Results for the (a) linear and (b) nonlinear correlation between satellite burn severity indices and 
in situ severity estimates given by GeoCBI. RBR – Relative Burn Ratio; RDT – Relativized Delta; DELTA – 
the difference between pre vs post-fire; NBR - Normalized Burn Ratio; TCTG – Tasseled Caps Transform – 
“greenness” component. S2MSI – Sentinel-2/MSI; and L8OLI – Landsat-8/OLI satellite mission. 
Comparison between spectral and field indices was performed at three extents: (i) point level (using the 
exact coordinates of the central point of the plot), (ii) 20 m buffer around the central point and (iii) a 30 m 
buffer. 

 

(a) Spearman non-parametric linear correlation 

Severity indicator 
Spectral 

index 
Satellite Point Buffer 20m Buffer 30m 

RBR NBR S2MSI 0.68 0.71 0.70 

RDT NBR S2MSI 0.69 0.71 0.69 

DELTA NBR S2MSI 0.66 0.69 0.68 

RBR NBR L8OLI 0.65 0.66 0.65 

RDT NBR L8OLI 0.65 0.65 0.66 

DELTA NBR L8OLI 0.64 0.65 0.64 

RDT TCTG L8OLI 0.61 0.60 0.62 

RBR TCTG L8OLI 0.55 0.55 0.56 

DELTA TCTG L8OLI 0.54 0.53 0.54 
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RDT TCTG S2MSI 0.44 0.42 0.43 

RBR TCTG S2MSI 0.39 0.38 0.40 

DELTA TCTG S2MSI 0.40 0.38 0.40 

      

 

 

(b) Nonlinear correlation (Ranjan and Banerjee, 2019) 

Severity indicator 
Spectral 

index 
Satellite Point Buffer 20m Buffer 30m 

RDT TCTG L8OLI 0.76 0.63 0.63 

RBR TCTG L8OLI 0.74 0.53 0.57 

RBR NBR L8OLI 0.74 0.67 0.67 

RDT NBR S2MSI 0.72 0.75 0.73 

RBR NBR S2MSI 0.71 0.73 0.72 

DELTA NBR S2MSI 0.68 0.70 0.69 

RDT NBR L8OLI 0.67 0.67 0.62 

DELTA NBR L8OLI 0.66 0.66 0.65 

DELTA TCTG L8OLI 0.51 0.50 0.56 

RDT TCTG S2MSI 0.37 0.39 0.42 

RBR TCTG S2MSI 0.30 0.29 0.31 

DELTA TCTG S2MSI 0.29 0.28 0.30 
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5.5.2. Results for the nonlinear model at 20-m buffer – Sentinel-2 NBR 

 

 

Figure 36  – From top to bottom, 
non-linear exponential model 
relating spectral severity of Delta 
NBR, Relativized NBR and RBR 
from Sentinel-2 with GeoCBI 
estimates from the field. Results 
are for 20 m buffers around the 
plot central point. 
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5.5.3. Results for the nonlinear model at 30-m buffers – Sentinel-2 NBR 

 

 

Figure 37 – From top to bottom, 
non-linear exponential model 
relating spectral severity of Delta 
NBR, Relativized NBR and RBR 
from Sentinel-2 with GeoCBI 
estimateds from the field. Results 
are for 30 m buffers around the 
plot central point. 
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